RPi2 远程控制PC电源开关

远程连接物理机调试、测试固件、内核级补丁时,因补丁功能异常导致死机是经常发生的,如果你有一个 Rpi,那就可以派上用场了,本文记录了使用 Rpi2 的 GPIO 远程控制 PC 电源开关的方法。

物理连接
rpi2 有数量众多的 pinout,将 rpi2 的 pin37(gpio26) 与 pc front panel 的 pwr_sw_p 连接,再将 rpi2 的 pin39(gnd) 与 pc front panel 的 pwr_sw_n 连接。如图:
RP2_Pinout
panel(1)

软件控制

# 先将 gpio 26 export,这步不必每次都做,当 /sys/class/gpio/gpio26 目录不存在时执行。
echo 26 > /sys/class/gpio/export
cd /sys/class/gpio/gpio26
# 开机
echo out > direction; echo 0 > value; sleep 1; echo in > direction
# 关机
echo out > direction; echo 0 > value; sleep 5; echo in > direction

Over!

ArchLinux 部署 SSD 缓存

在 Linux 系统上使用带宽更高、延迟更小的 SSD 作为 HDD 的缓存来打造软件实现的“混合硬盘”是一种容量和性能折中的方案。在 Linux 系统中使用高速外存作低速外存的缓存有两个成熟的方案:1. lvmcache 2. bcache。本文记录的是基于 lvmcache 在 Arch Linux 系统上的部署方法。

硬件情况
1. 一块120GB容量的固态硬盘 (/dev/sda)。
2. 一块1TB容量的机械硬盘 (/dev/sdb)。

分区规划

/dev/sda1     20GB     lvm
/dev/sda2     100GB    lvm
/dev/sdb      1TB      lvm

LVM 规划

VG (system) -> { PV (/dev/sda1) }
VG (data) -> { PV (/dev/sdb), PV (/dev/sda2) }
 
LV (system/arch) 19.9GB
LV (data/home) 917GB
LV (data/home_cache) 91GB

操作系统完全安装在 SSD 中, home 存放于 HDD 中,但使用 SSD 的剩余空间作为 cache。为什么不把所有数据存放于 HDD 中,仅用 SSD 作为 cache 呢?测试结果是当 cache 加入后就影响了系统的启动,所有只能应用于数据区。

详细步骤
1. 使用 ArchLinux iso 启动盘启动系统。
2. fdisk /dev/sda 先创建一个类型为 lvm 容量为 20GB 的标准主分区,再创建一个类型为 lvm 容量为 100GB 的标准主分区。
3. pvcreate /dev/sda1
4. pvcreate /dev/sda2
5. pvcreate /dev/sdb
6. vgcreate system /dev/sda1
7. vgcreate data /dev/sdb
8. lvcreate -L 19.9G system -n arch
9. mkfs.ext4 -E discard /dev/mapper/system-arch
10. mount /dev/mapper/system-arch /mnt
11. pacstrap /mnt 按照需要安装系统
12. arch-chroot /mnt
13. lvcreate –type cache –cachemode wirteback -L 91G -n home_cache data/home /dev/sda2
14. 另开一个 tty, mount -o bind /run /mnt/run
15. 回到原 tty, vim /etc/mkinitcpio.conf,找到 HOOkS,在 block 和 filesystem 之间增加个 lvm2
16. mkinitcpio -p linux
17. vim /etc/default/grub,找到 GRUB_PRELOAD_MODULES,增加 lvm。
18. grub-mkconfig -o /boot/grub/grub.cfg
19. grub-install /dev/sda
20. 退出,重启。

查看 cache 状态

sudo lvs -o cache_read_hits,cache_read_misses,cache_write_hits,cache_write_misses data/home

Over!

MIPS J类指令目标范围

MIPS 跳转指令共分为三类:基于PC的相对跳转、基于PC区域的相对跳转、基于寄存器的绝对跳转。其中基于 PC 区域的相对跳转也就是我们要说的 J 类指令。

J类指令有长达26位的指令 index 编码域,因为指令都是4字节对齐的,所有表示的范围是 256M(28位)。那么J类跳转的目标地址是如何计算的呢?

目标PC = 延迟槽指令PC的28位以上的高位 || (J类指令26位的立即数 << 2)

是不是不易想像范围,看看图示吧:

j-class
 
|: 265M 边界
j: j 指令位置
t: 可行的跳转目标位置
 
----------------|--------------------------------|--------------------------------|----------------
---------------j|tttttttttttttttttttttttttttttttt|--------------------------------|----------------
----------------j-ttttttttttttttttttttttttttttttt|--------------------------------|----------------
----------------|j-tttttttttttttttttttttttttttttt|--------------------------------|----------------
----------------|tttttttttttttttj-ttttttttttttttt|--------------------------------|----------------
----------------|ttttttttttttttttttttttttttttttj-|--------------------------------|----------------
----------------|-------------------------------j|tttttttttttttttttttttttttttttttt|----------------
----------------|--------------------------------j-ttttttttttttttttttttttttttttttt|----------------

Over!

优化 Linux 系统 IBus 郑码输入法

偶然的机会体验了一下 Windows 平台的“东方制作”郑码6.6,默认为4键自动提交,不动态调频等等觉得很好用,用了这么长时间的 IBus 郑码都不知道这些都应该是形码输入法的福利了。查找下来发现 IBus 郑码不好用的原因其实主要为配置不当和对5码郑码编码方案支持的不成熟。

在原来 ibus-table-zhengma 的基础上优化了郑码的使用体验。主要包括启用自动提交、关闭自动调词频,另外还将5码编码方案退回4码编码方案。

码表下载
https://github.com/heiher/ibus-table-zhengma

安装、配置
ArchLinux 安装方法:
1. 从 AUR 下载源代码包 https://aur.archlinux.org/packages/ibus-table-zhengma
2. 通过 makepkg 命令编译二进制包并安装。

配置注意事项:
如原来使用过旧版的郑码输入法,请在安装新版本后,删除 ~/.local/share/ibus-table 目录,并执行 ibus restart,最后进入郑码输入法的配置界面恢复默认配置(否则自动提交功能不会正常工作)。

Over!

System V AMD64 ABI calling conventions

The calling convention of the System V AMD64 ABI is followed on Solaris, Linux, FreeBSD, Mac OS X, and other UNIX-like or POSIX-compliant operating systems. The first six integer or pointer arguments are passed in registers RDI, RSI, RDX, RCX, R8, and R9, while XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6 and XMM7 are used for floating point arguments. For system calls, R10 is used instead of RCX. As in the Microsoft x64 calling convention, additional arguments are passed on the stack and the return value is stored in RAX.

Registers RBP, RBX, and R12-R15 are callee-save registers; all others must be saved by the caller if they wish to preserve their values.

Unlike the Microsoft calling convention, a shadow space is not provided; on function entry, the return address is adjacent to the seventh integer argument on the stack.

Over!

Linux 不使用 chroot 临时替换C运行时库

有些时候我们需要在老旧的 Linux 系统上运行一些依赖于较新版本 C 库的应用程序或库,应用程序会因为系统中安装的C库缺少符号还启动失败。解决方法之一就是临时替换使用非系统安装的C运行时库。使用临时C库需要做些什么配置及会带来哪些问题呢?

配置步骤
1. 下载与目标应用程序版本相匹配的临时C库,解压缩到临时位置 A。
2. 需要设置 LD_LIBRARY_PATH 环境变量指向目标临时C库的存储位置 A。
3. 需要通过与临时C库匹配的 ld.so 启用应用程序。因为应用程序默认是链接了一个绝对路径的 ld.so,如 x86_64 是 /lib64/ld-linux-x86-64.so.2

衍生问题
使用临时C库的 ld.so 启动的应用程序执行系统标准命令的子进程出错,原因是因为环境变量 LD_LIBRARY_PATH 被子进程继承,从而导致子进程在执行系统C库的ld.so中加载了版本不匹配的临时C库。

解决办法
在合适的时机清除环境变量 LD_LIBRARY_PATH,最合适的时机应用就是执行目标应用程序 main 函数之前啦。这里又要用到了之前写过的方法 => Linux 平台一种进程代码注入方法

/* fakemain.c
 * Heiher <admin@heiher.info>
 */
 
#include <stdio.h>
#include <stdlib.h>
 
#define __USE_GNU
#include <dlfcn.h>
 
int
__libc_start_main(int (*main)(int, char **, char **),
			int argc, char **ubp_av, void (*init)(void),
			void (*fini)(void), void (*rtld_fini)(void),
			void (*stack_end))
{
	int (*__libc_start_main_real)(int (*main) (int, char **, char **),
				int argc, char **ubp_av, void (*init)(void),
				void (*fini)(void), void (*rtld_fini)(void),
				void (*stack_end));
 
	unsetenv ("LD_PRELOAD");
	unsetenv ("LD_LIBRARY_PATH");
 
	__libc_start_main_real = dlsym(RTLD_NEXT, "__libc_start_main");
 
	return __libc_start_main_real(main, argc, ubp_av, init, fini,
				rtld_fini, stack_end);
}
gcc -fPIC -O3 -shared -o libfakemain.so fakemain.c -ldl

设置环境变量 LD_PRELOAD=/xxx/libfakemain.so,运行目标应用程序在执行 main 之前即会清除 LD_PRELOAD 和 LD_LIBRARY_PATH 变量。

为了方便使用我还写了个 wrapper,使用方法是将真实的目标应用程序 xxx 重命令为 xxx.bin,然后创建个符号链接 xxx 指向 wrapper,执行时直接执行 xxx,wrapper 会自动设置所需要的环境变量。

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
 
int
main (int argc, char *argv[])
{
	int i;
	char buf[1024], path[1024];
	char *str, *root, *args[512];
 
	/* get FAKE_ROOT */
	root = getenv ("FAKE_ROOT");
	if (!root) {
		fprintf (stderr, "Please set environment FAKE_ROOT!\n");
		return -1;
	}
 
	/* export PATH */
	str = getenv ("PATH");
	if (!str) {
		fprintf (stderr, "Get environment PATH failed!\n");
		return -2;
	}
	if (NULL == strstr (str, root)) {
		strcpy (buf, root);
		strcat (buf, "/bin:");
		strcat (buf, str);
		if (0 != setenv ("PATH", buf, 1)) {
			fprintf (stderr, "Set environment PATH failed!\n");
			return -3;
		}
	}
 
	/* export LD_PRELOAD */
	strcpy (buf, root);
	strcat (buf, "/lib64/libfakemain.so");
	if (0 != setenv ("LD_PRELOAD", buf, 1)) {
		fprintf (stderr, "Set environment LD_PRELOAD failed!\n");
		return -4;
	}
 
	/* export LD_LIBRARY_PATH */
	strcpy (buf, root);
	strcat (buf, "/lib64");
	if (0 != setenv ("LD_LIBRARY_PATH", buf, 1)) {
		fprintf (stderr, "Set environment LD_LIBRARY_PATH failed!\n");
		return -5;
	}
 
	/* set new path */
	strcpy (path, root);
	strcat (path, "/lib64/ld-2.20.so");
	args[0] = path;
 
	/* set real program path */
	strcpy (buf, root);
	strcat (buf, "/bin/");
	strcat (buf, argv[0]);
	strcat (buf, ".bin");
	args[1] = buf;
 
	/* copy arguments */
	for (i=1; i<argc; i++)
	      args[i+1] = argv[i];
	args[i+1] = NULL;
 
	/* run real program */
	return execv (path, args);;
}
gcc -O3 -o wrapper wrapper.c

Over!