Dump VDSO via GDB

gdb /bin/bash
(gdb) b main
(gdb) r
(gdb) info proc map
Mapped address spaces:
          Start Addr           End Addr       Size     Offset objfile
      ...
      0x7ffff7fd1000     0x7ffff7fd3000     0x2000        0x0 [vdso]
      ...
(gdb) call (int)open("/tmp/vdso.so", 0101, 0644)
$1 = 3
(gdb) call (long)write($1, 0x7ffff7fd1000, 0x2000)
(gdb) call (int)close($1)
(gdb) quit
file /tmp/vdso.so
/tmp/vdso.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=1a3fac101214fe3ecfb3788d4f8af3018f1f2667, stripped

Over!

Disable IBus embed preedit text via dbus-send

dbus-send --bus="`ibus address`" --print-reply \
    --dest=org.freedesktop.IBus \
    /org/freedesktop/IBus \
    org.freedesktop.DBus.Properties.Set \
    string:org.freedesktop.IBus string:EmbedPreeditText variant:boolean:false

Over!

Linux simple source policy routing

Dual network connections
eth0:
Address: 192.168.0.2
NetMask: 255.255.255.0
Gateway: 192.168.0.1

eth1:
Address: 192.168.1.2
NetMask: 255.255.255.0
Gateway: 192.168.1.1

Routing policy
* Transmit via eth0 when source address is 192.168.0.2
* Transmit via eth1 when source address is 192.168.1.2

Commands

# eth0
ifconfig eth0 192.168.0.2/24 up
ip rule add from 192.168.0.2 table 251
ip route add default via 192.168.0.1 dev eth0 src 192.168.0.2 table 251
 
# eth1
ifconfig eth1 192.168.1.2/24 up
ip rule add from 192.168.1.2 table 252
ip route add default via 192.168.1.1 dev eth1 src 192.168.1.2 table 252

Over!

Alpha 通用64位立即数装载

Alpha 立即数装载方式
1. 使用立即数装载指令
2. 使用访存指令从内存装载

Alpha 立即数装载指令
* lda
格式:lda ra, imm16(rb)
功能:val(ra) = val(rb) + sign_extend_to_64bit(imm16)

*ldah
格式:ldah ra, imm16(rb)
功能:val(ra) = val(rb) + sign_extend_to_64bit(imm16 * 65536)

通用64位立即数装载代码生成

# li64.S
    .text
 
    .globl    li64
    .enty     li64
    .type     li64, @function
    .set      noreorder
    .set      nomacro
    .set      nomove
    .set      volatile
li64:
    ldah      v0, 0(zero) # highest
    lda       v0, 0(v0)   # higher
    sll       v0, 32, v0
    ldah      v0, 0(v0)   # high
    lda       v0, 0(v0)   # low
 
    ret       zero, (ra)
    .end      li64
    .size     li64, .-li64
unsigned long imm64;
 
if ((short) (imm64 >> 0) < 0)
    imm64 += 0x10000ul;
if ((short) (imm64 >> 16) < 0)
    imm64 += 0x100000000ul;
if ((short) (imm64 >> 32) < 0)
    imm64 += 0x1000000000000ul;
 
short highest = (short) (imm64 >> 48);
short higher = (short) (imm64 >> 32);
short highe = (short) (imm64 >> 16);
short low = (short) imm64;

Over!

一个简单、轻量的 Linux 协程实现

HevTaskSystem 是一个简单的、轻量的多任务系统(或称协程),它工作于 Linux 平台,I/O event poll 基于 Epoll。

协程其实是一种古老的技术,协程有这么几个特点:
1. 协程是一个并发运行的多任务系统,一般由一个操作系统线程驱动。
2. 协程任务元数据资源占用比操作系统线程更低,且任务切换开销小。
3. 协程是任务间协作式调度,即某一任务主动放弃执行后进而调度另外一任务投入运行。

与异步、非阻塞式I/O模型类似,协程技术同样适用于处理海量的并发I/O任务,而且还不会像异步方式使业务代码逻辑支离破碎。

基本信息
HevTaskSystem 目前开放了四个类:HevTaskSystem、HevTask、HevTaskPoll 和 HevMemoryAllocator。
HevTaskSystem 是协程任务系统,管理、调度众多的 HevTask 实例运行。由单一操作系统线程驱动,多个线程可并行驱动多套任务系统。
HevTask 是协程任务,实例可加入某一 HevTaskSystem 中调度运行。
HevTaskPoll 是提供了 poll 兼容的系统调用。
HevMemoryAllocator 是一个内存分配器接口,其后端有两套实现:
* 原始分配器,等价于 malloc/free。
* Slice 分配器,按分配大小限量缓存的分配器,缓存替换算法是 LRU。

Public API
TaskSystem – hev-task-system.h
Task – hev-task.h
TaskPoll – hev-task-poll.h
MemoryAllocator – hev-memory-allocator.h

简单示例
该示例演示了在主线程上运行一个协程任务系统,并创建两个独立的协程任务,分别以不同的优先级运行各自的入口函数。各自的入口函数中各循环2次,每次打印一个字符串并 yield 释放CPU 触发调度切换。

/*
 ============================================================================
 Name        : simple.c
 Author      : Heiher <r@hev.cc>
 Copyright   : Copyright (c) 2017 everyone.
 Description :
 ============================================================================
 */
 
#include <stdio.h>
 
#include <hev-task.h>
#include <hev-task-system.h>
 
static void
task_entry1 (void *data)
{
        int i;
 
        for (i=0; i<2; i++) {
                printf ("hello 1\n");
                /* 主动放弃执行,yield 函数会触发重新调度选取另一任务投入执行 */
                hev_task_yield (HEV_TASK_YIELD);
        }
}
 
static void
task_entry2 (void *data)
{
        int i;
 
        for (i=0; i<2; i++) {
                printf ("hello 2\n");
                hev_task_yield (HEV_TASK_YIELD);
        }
}
 
int
main (int argc, char *argv[])
{
        HevTask *task;
 
        /* 在当前线程上初始化 task system */
        hev_task_system_init ();
 
        /* 创建一个新的 task,栈空间采用默认大小 */
        task = hev_task_new (-1);
        /* 设置该 task 的优先级为 1 */
        hev_task_set_priority (task, 1);
        /* 将该 task 放入当前线程的 task system中,任务人口函数为 task_entry1
         * task_entry1 并不会在 hev_task_run 执行后立即调用,需等到该 task 被调度。
         */
        hev_task_run (task, task_entry1, NULL);
 
        task = hev_task_new (-1);
        hev_task_set_priority (task, 0);
        hev_task_run (task, task_entry2, NULL);
 
        /* 运行当前线程上相关的 task system,当无任务可调度时该函数返回 */
        hev_task_system_run ();
 
        /* 销毁当前线程上相关的 task system */
        hev_task_system_fini ();
 
        return 0;
}

Over!

Windows 7 有线局域网组播接收丢包调试

一有线局域网实时流媒体组播传输应用从 Windows 10 迁移至 Windows 7 平台后,迁移后传输质量下降明显。

对比实验发现在同一发送端的同一组播窗口中,运行在 Windows 7 系统上的接收端效果明显劣于 Windows 10 接收端。

分析接收端的收到的数据包发现,Windows 7 平台的接收端存在明显的丢包现象。于是排查了这两个方面:
1. Win7 网卡驱动较 Win10 较旧。
2. Socket 默认接收缓冲区是否太小。

针对第1点,在将 Win7 网卡驱动升级至最新后无明显改善。:(
针对第2点,显式设置了接收缓冲区为 1MB 后,接收质量得到明显改善。:)

Over!

用龙芯EJTAG硬件断点优化Linux ptrace watch性能

在MIPS标准的协处理器0(CP0)中定义一组硬件watchpoints接口,由于某些原因,龙芯3系列处理器并未实现,这就导致了在该架构Linux系统中用gdb watch只能使用软件断点,真心非常、非常慢。:(

好消息是龙芯3系列处理器是实现了MIPS EJTAG的,兼容2.61标准,那么能否利用MIPS EJTAG的硬件断点功能部件实现Linux ptrace的watchpoints功能呢?答案是肯定的。让我们一起看看具体的方法吧。

首先,我们需要更改BIOS中的异常处理函数,将EJTAG调试异常重新路由至Linux内核中处理,因为MIPS EJTAG异常处理程序的入口地址固定为0xbfc00480

         /* Debug exception */
         .align  7           /* bfc00480 */
         .set    push
         .set    noreorder
         .set    arch=mips64r2
         dmtc0   k0, CP0_DESAVE
         mfc0    k0, CP0_DEBUG
         andi    k0, 0x2
         beqz    k0, 1f
          mfc0   k0, CP0_STATUS
         andi    k0, 0x18
         bnez    k0, 2f
          nop
 1:
         mfc0    k0, CP0_EBASE
         ins     k0, zero, 0, 12
         addiu   k0, 0x480
         jr      k0
          dmfc0  k0, CP0_DESAVE
 2:
         la      k0, 0xdeadbeef
         dmtc0   k0, CP0_DEPC
         dmfc0   k0, CP0_DESAVE
         deret
         .set    pop

这段处理程序实现了两个功能:
1. 将来自用户态的sdbbp指令触发的异常路由至地址 0xdeadbeef。
2. 将来自内核态的sdbbp指令触发的异常或是任意态的非sdbbp触发的异常路由至 ebase+0x480。

接着,我们还需要修改内核,实现下列功能:
1. 实现 EJTAG watch 相关的 probe、install、read、clear 等操作,及合适的调试异常处理程序。
2. 实现 Linux ptrace watch 接口与 EJTAG watch 的对接。

See: https://github.com/heiher/linux-stable/commits/ejtag-watch-4.9

Over!